Quarterly Examination - 2018-19 PHYSICS

Class: VII

Full Marks: 80 Time: 2 Hrs. 15 mints

(4)

- Q1. Write the CGS and S.I. units of the following physical quantities.
 - a) Volume
 - b) Density
 - Force
 - Energy
- Q2. Name the following. a) Two types of mechanical energy
- (15)
 - Unit of frequency
 - The scientist who formulated the basic laws of gravitation
 - Two types of potential energy
 - The instrument used to measure weight in a jeweller's shop
 - A device used to test whether a battery is fully charged
 - An example of a non-contact force
 - h) Two factors on which kinetic energy depends
 - The motion in which there is simultaneous occurrence of both rotational and translational motion.
 - Another name for rotatory motion.

(i)	What is the distance he travels?	(1)
(1)	what is the distance he travels?	

- What is the displacement? (1)
- (iii) Is the distance covered equal to the displacement? Why? (2)
- Q10. State the type of motion in each case below. (5)
 - Marching of soldiers in a parade.
 - A spinning top. b)
 - Motion of a pendulum.
 - Swinging of your arms or legs as you walk.
 - Brownian movement.
- Q11. Draw a simple pendulum when its bob its displaced slightly to one side. Mark on the diagram -(1+3)
 - Point of Suspension,
 - Point of Oscillation,
 - (iii) Length of the Pendulum,
 - (iv) Mean Position,
 - Extreme Position,
 - (vi) Amplitude

Q12. Answer the following:

- a) A bullet of mass 0.01 kg is moving with a velocity of 200 m/s. Find the kinetic energy of the bullet.
- A train takes 4 hours to reach from Station A to Station B, and then 4 hours to return. The distance between the two stations is 200 km. Calculate the average speed of the train.
- Find the mass in kg of 1L of mercury, if the density of mercury is

13.6 x 10³
$$\frac{\text{kg}}{\text{m}^3}$$

Q5. Match the following (Do not draw lines. Write in pairs) (4)

a. 1L (i) 1000 cm³

 $1 \frac{g}{cm^3}$

(ii) 1000 $\frac{\text{kg}}{\text{m}^3}$

1 kgf C.

(iii) 1N

1J

 $(iv) \frac{1}{T}$

10⁵ dyn

(v) 10 N

1 calorie

(vi) 4.2 J

g

(vii) 10⁷ erg

Q6. Conversion

(6).

- 1000 cm³ into m³
- 10 hectare into m²
- 3½ hours into minutes
- Q7. Draw a spring balance and label its parts (5)
- Q8. Write two difference between
- (4)
 - a) Speed and Velocity
 - Mass and Weight
- Q9. A man starts walking from A due west for 5 km and reaches B. Then from B he walks due north for 12 km and reaches C.

- k) One complete to and fro movement of a pendulum about its mean position
- I) A physical quantity that needs both magnitude and direction for its complete description.
- Q3. Calculate the area of the irregular surface. (3) (1 unit = 1 cm²).

Q4. Define.

- a) Capacity
- b) Body at rest
- c) Frequency of a Simple Pendulum
- d) Law of Conservation of Energy
- e) Simple Pendulum

d) Calculate the weight of a body on the moon having mass 5 kg, if the acceleration due to gravity is 1.6 m/s².

Q13. Answer the questions below. $(2 \times 3 = 6)$

- a) Equal volumes of different substances are weighed on a beam balance. Will the weights be the same? Why?
- b) You are travelling in a train. You find the suitcases kept near you are in a state of rest. Are the stations passing by in a state of rest or motion? Why?
- c) Take a beaker containing water. Put some ice cubes into it. Will the ice cubes sink or float in the water? Why?
- Q14. Choose the correct option from the bracket and fill (2) in the blanks.
 - a. Total mechanical energy is the ____ (difference/product/sum) of its potential and kinetic energy.
 - b. As we go to a higher altitude, the weight of our body ____ (increases / decreases / remain same).